Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
J. epilepsy clin. neurophysiol ; 16(4): 149-154, 2010. ilus
Article in Portuguese | LILACS | ID: lil-578770

ABSTRACT

INTRODUÇÃO: No sistema nervoso central a comunicação entre neurônios se realiza através de estruturas denominadas sinapses: elétricas ou químicas. As sinapses elétricas são formadas pela aproximação das membranas plasmáticas de dois neurônios formando estruturas chamadas junções comunicantes (gap junctions, do inglês). As junções comunicantes são compostas por seis subunidades da proteína conexina de cada membrana, formando poros que comunicam o citoplasma de células adjacentes e permitem a passagem de íons e pequenas moléculas. OBJETIVOS: A presente revisão pretende descrever e discutir os principais resultados que apontam para uma importante relação entre junções comunicantes e sincronia neuronal durante crises epilépticas. RESULTADOS E CONCLUSÃO: Quando um neurônio é despolarizado, este tipo de comunicação permite a rápida transferência iônica entre as células, promovendo alta sincronia neuronal. Recentemente, o papel das junções comunicantes na geração e propagação de descargas epilépticas tem sido estudado através do uso de diferentes modelos experimentais in vivo, in vitro e in silico (modelos computacionais).


INTRODUCTION: In the central nervous system, neuronal communication is accomplished by structures called synapses: electrical or chemical. Electrical synapses are formed by the apposition of plasmatic membranes at gap junctions and the interaction of connexin subunits from two neurons. At this site, connexin complexes create intercellular pores that communicate the cytoplasm of adjacent neurons and allow free flow of ions and small molecules. OBJECTIVE: In this review, we will present and discuss recent results showing the possible involvement of electrical synapses in the neuronal hypersynchronization during epileptic seizures. RESULTS AND CONCLUSION: When a neuron is depolarized, ions flow very rapidly from one cell to the other promoting high neuronal synchrony. More recently, the role of gap junctions in the generation and propagation of epileptic discharges has been investigated using combined approaches of in vivo, in vitro and in silico (computational) models.


Subject(s)
Humans , Seizures , Gap Junctions , Connexins , Electrical Synapses
2.
J. epilepsy clin. neurophysiol ; 13(1): 21-27, Mar. 2007. tab
Article in Portuguese | LILACS | ID: lil-457661

ABSTRACT

INTRODUÇÃO: Estímulos potencialmente deletérios às células podem, quando aplicados próximos ao limiar de lesão irreversível, ativar mecanismos protetores endógenos, diminuindo potencialmente o impacto de um estímulo subseqüente, mais intenso, sendo este fenômeno conhecido como tolerância ou pré-condicionamento. No sistema nervoso central (SNC), vários estímulos de pré-condicionamento foram identificados. OBJETIVOS: A presente revisão pretende descrever e discutir estudos envolvendo a neuroproteção na condição epiléptica utilizando diferentes insultos pré-condicionantes, assim como suas possíveis implicações clínicas. RESULTADOS E CONCLUSÃO: Vários estudos sugerem que o pré-condicionamento isquêmico, hipóxico, hipertérmico e através de crises convulsivas de intensidade moderada são capazes de ativar mecanismos endógenos, diminuindo potencialmente o impacto de crises epilépticas severas subseqüentes. A neuroproteção pôde ser observada tanto comportamentalmente, quanto através de análises morfológicas. Embora a maioria dos mecanismos ainda sejam desconhecidos, eles podem envolver a ativação de cascatas de sinalização intracelular específicas e a indução de expressão gênica. Portanto, os resultados de tais descobertas podem contribuir para o melhor entendimento das crises epilépticas e introduzir novas perspectivas sobre possíveis tratamentos da epilepsia.


INTRODUCTION: Different stimuli can potentially protect cells from damage if applied prior to a strong and harmful insult. This phenomenon is called tolerance- or priming-induced cellular protection. In the central nervous system (SNC), several forms of priming stimuli were identified and showed a significant effect reducing neuronal death in the brain. OBJECTIVE: The present review discusses different studies involving neuroprotection and epilepsy, as well as their clinical implications. RESULTS AND CONCLUSIONS: A number of studies reported that hypoxic, ischemic, hyperthermic and convulsive priming events activate endogenous mechanisms capable of reducing both the behavioral and cellular damaging effects of subsequent seizures. Such mechanisms seem to involve the activation of specific signaling cascades and gene expression changes. These findings, therefore, can contribute to a better understanding of the preconditioning events on epileptic seizures as well as introduce new perspectives to the treatment of epilepsy.


Subject(s)
Humans , Status Epilepticus , Ischemic Preconditioning , Epilepsy/pathology , Neuroprotection , Hypoxia , Nerve Degeneration
SELECTION OF CITATIONS
SEARCH DETAIL